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Outline

The goal of this paper is to introduce the reader to Dijkgraaf-Witten theory.

Dijkgraaf-Witten theory is a topological quantum field theory. Topological

quantum field theories are today rewarding area of study in both physics and

mathematics at the intersection of physics, geometry, and algebra. Their use-

fulness stems mainly from the definite axiomatization given by Atiyah natu-

rally expressed in the language of category theory as symmetric monoidal func-

tors from the category of bordisms to the category of vector spaces. Instead of

starting immediately with this definition and because it is not assumed that

the reader has any background with quantum field theory, we provide some

motivation through developing the path integral of quantum field theory. Nor

have we assumed any familiarity with category theory and the necessary defi-

nitions are developed in the course of the exposition. The outline of the paper

is as follows: The first section provides a short introduction to quantum field

theory and the philosophy of topological quantum field theory. We then state

Atiyah’s axioms for a topological quantum field theory and expound upon its

structures for dimension 2. Finally we discuss Dijkgraaf-Witten theory and

provide connections to classical representation theory via Mednykh’s formula.



Quantum Mechanics

Because quantum field theory is the relativistic successor to quantum mechan-

ics and because many of the interpretations of TQFTs depend on objects first

encountered in quantum mechanics we begin our development with quantum

mechanics.

In classical mechanics the state of a particle is fully determined by its

position x and momentum p. Together these coordinates define a point in

a 6-dimensional phase space and the evolution of the particle is given as a

trajectory through this phase space. In quantum mechanics the state of a

particle is given by a vector |ψ⟩ living in a complex Hilbert space H. We

denote the dual vector as ⟨ψ| ∈ Hom(H,C). Thus ⟨ψ|ψ⟩ ∈ C is convenient

notation for an inner product. Max Born gave the statistical interpretation of

|ψ⟩ which says that if H has a basis, say |x⟩, then the projection of the state

vector onto this basis is related to the probability of observing the particle in

the state |x⟩. The projection is called the wavefunction ψ and is in general

complex-valued

ψ(x) ≡ ⟨x|ψ⟩

and |ψ(x)|2 is the probability density of observing the particle at x. This

interpretation requires that ψ is properly normalized, or that ⟨ψ|ψ⟩ = 1.

The state vector will in general depend on time. This is indicated by

writing |ψ(t)⟩. When the state vector is viewed as describing the position of a

particle it can be projected onto the position basis giving the time-dependent

wavefunction, Ψ(t, x) = ⟨x|ψ(t)⟩. According to Born’s interpretation |Ψ(t, x)|2

gives the probability density of finding the particle at position x at time t. It

should be remarked that the state vector is more fundamental and general than

this position representation leads one to believe. By analogy with classical

mechanics we expect that the wavefunction can also be projected onto the

momentum-space basis. In fact this is a valid operation and when this is

done it is sometimes referred to as Φ(t, p) ≡ ⟨p|ψ(t)⟩. Unlike in classical

mechanics however position and momentum are not totally independent. In
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quantum mechanics the position and momentum representations are related

roughly by Fourier transformation which leads to the well-known Heisenberg

uncertainty principle. Also unlike classical mechanics these representations

are not always sufficient, the Hilbert space H need not be related to either of

these representations in general.

The goal of quantum mechanics is to determine how states evolve in time

and for this we need the idea of an operator acting on the state. We define op-

erators in H as assignments Ô : H → H and similarly in the dual space. Every

operator Ô acting in the Hilbert space can be identified with an operator in

the dual space thus defining its adjoint Ô†. The fundamental goal of quantum

theory is to determine how the state vector evolves in time. We may postulate

that the time-evolution of |ψ(t)⟩ is given by an operator U as |ψ(t)⟩ = U(t)|ψ0⟩
where |ψ0⟩ = |ψ(0)⟩ for some chosen origin of time. Note that U(0) = 1 is

the identity operator. Using this operator we require consistency with Born’s

interpretation that total probability is conserved

⟨ψ(t)|ψ(t)⟩ = ⟨ψ0|U †(t)U(t)|ψ0⟩ = 1

Thus we must have U †U = 1. This condition says that U is unitary. For

small t we expect that U should remain close to the identity, U(ϵ) ≈ 1− iϵH
where H is some other operator and the imaginary number i is introduced for

later convenience but might as well have been included in the definition of H.

This condition expresses the belief that systems evolve continuously. Because

of unitarity this condition becomes

U †U = (1 + iϵH†)(1− iϵH) = 1 + iϵ(H† −H)

where we have kept only terms to first order in ϵ. To ensure unitarity of U

this condition requires H = H†, or that H is hermitean. Thus we have
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|ψ(t+ ϵ)⟩ = (1− iϵH)|ψ(t)⟩

=⇒ |ψ(t+ ϵ)⟩ − |ψ(t)⟩
ϵ

= −iH|ψ(t)⟩

In the limit ϵ→ 0 this provides the equation Erwin Schrödinger wrote in 1925

which determines the time-evolution of the state vector as

iℏ
∂

∂t
|ψ(t)⟩ = H|ψ(t)⟩

for some hermitian operator H which is identified with the Hamiltonian of

the particle from classical mechanics. The program of quantum mechanics

involves studying solutions to this equation for various realizations of H. The

eigenspectrum of H plays a crucial role in this theory.

Writing the Schrödinger equation in the position basis and separating vari-

ables Ψ(t, x) = ϕ(t)ψ(x) gives two ordinary differential equations

dϕ

dt
= − i

ℏ
Eϕ Hψ = Eψ

The first of these is trivial to solve giving ϕ(t) = exp(−iEt/ℏ). The second

is an eigenvalue equation for the eigenspectrum of H. In many cases the

eigenvalues are labelled by a discrete index En and the eigenstates as |n⟩.
After the entire eigenspectrum of H is known, the Schrödinger equation is

solved by decomposing the initial state into this eigenbasis and applying time

evolution to each1

|ψ(t)⟩ =
∞∑
n=0

e−
iEn
ℏ t⟨n|ψ0⟩|n⟩

This Hamiltonian formulation works in many cases. However in classical

mechanics it is known that an equivalent Lagrangian formulation exists. This

Lagrangian formulation of quantum mechanics is supplied by Feynman’s path

integral. Classically we would formulate the Lagrangian by considering a tra-

1Parts of this section are based on notes prepared by [8]
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jectory x(t) between an initial point (xi, ti) and possible future point (xf , tf ).

We then associate to this trajectory a functional called its action, S[x(t)]. The

classical trajectory of the particle is then given as the trajectory x(t) which

extremizes the action. In quantum mechanics, because of the uncertainty prin-

ciple, we cannot speak of the particle as taking any definite path. Instead we

can speak only of the probability that a particle transitioned from one state,

|ψ(xi, ti)⟩, to another state |ψ(xf , tf )⟩. We define the transition probability

amplitude as the inner product of the wavefunction evaluated at these two

points. This quantity is known as the propagator

U(xf , tf ;xi, ti) ≡ ⟨ψ(xf , tf )|ψ(xi, ti)⟩

In practice the propagator is difficult to calculate. The postulate, first given

by Feynman, is to assume the contribution to the propagator from a particu-

lar trajectory is exp[iS[x(t)]/ℏ]. That is, every possible path contributes with

equal amplitude to the propagator, but with a phase related to the classical

action. For a given initial point and future point, summing over all possible

trajectories gives the propagator (the normalization constant A(t) is indepen-

dent of any individual path and therefore depends only on time):

U(xf , tf ;xi, ti) = A(t)
∑

all paths x from xi to xf

exp
[ i
ℏ
S[x(t)]

]
We integrate over all paths because we cannot speak of the particle as have

taken any particular path. This propagator, together with the initial state,

fully determines the evolution of the system. The propagator acts on a wave

function ψ to propagate it forward in time by

⟨xf |ψ(tf )⟩ =
∫
dxi⟨ψ(tf ,xf )|ψ(ti,xi)⟩|ψ(ti,xi)⟩

That is we also need to integrate over all possible initial points to determine

the time evolution because we cannot say with certainty where the particle

was originally located. This result, known as the path integral formulation,

can be shown to reduce to the Schrödinger equation.
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Quantum Field Theory2

The fundamental quantities of quantum field theory are the fields, ϕ. Particles

are viewed as excitations of this field and interactions between particles are

viewed as interactions between fields. These fields exists on a manifold M

and are defined as maps between manifolds, that is ϕ : M → X are fields on

M . For example X = R describes a scalar field. The goal of quantum field

theory is to determine the “equations of motion” of the fields. These can be

obtained in precisely the analogous way as quantum mechanics by writing a

Lagrangian as a function of the field ϕ and its derivatives ∂µϕ and solving

the Euler-Lagrange equations on M . Note that because M can be a general

manifold these will almost always make explicit reference to a metric gµν . For

a free massless scalar field the Lagrangian (density) is L = 1
2
gµν∂µϕ∂νϕ. We

can add a potential term in the normal way as L = 1
2
∂µϕ∂µϕ − V (ϕ) where

we have contracted the metric to define the partial with a raised index. The

action functional is defined as

S[ϕ] =

∫
M

L(ϕ, ∂µϕ)
√

det(g)dnx

where
√

det(g)dnx is the volume form on M . By analogy, the path integral is

Z(M) =

∫
Dϕe−S[ϕ]

where the integral is over all possible ϕ. Though this can only be given precise

meaning in a handful of cases, it provides the foundation for all physics.

As we argued above, Z(M) is the time-evolution operator on the fields

and, in principle, determines the evolution of the system. However in practice

it is still necessary to find a way to describe the final and initial states in

this language. What we want is to illustrate how the path integral can be

used to describe particle interactions. What we need to do to is couple a

spacetime dependent background field J to the Lagrangian which serves to

create or destroy particles. We imagine this background field turning on and

2This section borrows from [2].
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off as particles interact and annihilate. We can then expand the exponential

in the path integral in powers of this field and recover an integral of the form

⟨O1, . . . , On⟩g =
1

Z

∫
DϕO1 · · ·One

−S[ϕ]

where g indicates the metric onM . These integrals are almost never calculated

directly but can instead be expressed in terms of Feynman diagrams. The

variables O1, . . . , On are called observables of the field. An observable is, by

definition, a function from the set of field configurations {ϕ :M → X} to the

complex numbers. The path integral of the observables is called the correlation

function of the observables. In general the correlation function will depend on

the metric of spacetime because we coupled a spacetime-dependent background

field to the Lagrangian to get it.

An interesting special case occurs when the correlation functions are inde-

pendent of g. Because metric independence implies diffeomorphism invariance

we have the interesting result that all isometries f : M → M ′ leave the path

integral invariant. Stated more plainly, the theory is not sensitive to changes in

the shape of the manifold.3 But this is exactly what is meant by a topological

field theory: it is a field theory which depends only on the topology.

What does this mean for computing the correlation functions? When the

field theory is topological we know that the answer can only depend on the

topological invariants of the manifold. Therefore we expect there should be a

simpler way to solve the field theory by studying only the manifold topology.

This is what leads to the saying that a topological quantum field theory is a

quantum field theory which computes topological invariants.

We are almost prepared to state Atiyah’s axioms for a topological quantum

field theory and make precise the connection between topology and quantum

field theory. Before we get there though we need to take a quick detour through

category theory. Half of the battle of understanding Atiyah’s axioms is in

understanding the language in which they are stated.

3If the manifold represents spacetime then the correlation functions do not change when
the spacetime warps or contracts. This invariance is referred to as background independence
and is viewed by some as an important step towards a quantum theory of gravity.
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Category Theory4

The basic notion in category theory is that of a category, sometimes collo-

quially referred to as a ‘mathematical universe’. A category, C, consists of

a, b, c . . .Objects:

a
f−→ b, . . .Maps:

a
1a−→ a, . . .Identity Maps:

Assigns to each pair of maps of the typeComposition of maps:

a
g−→ b

f−→ c, another map a
f ◦ g−−→ c

Other words commonly used for maps are ‘morphism’ and ‘arrow’. Sometimes

the set of objects of a category are denoted ob(C) and the set of arrows as

hom(C) but more often they are both referred to simply by the name of the

category, C. We may describe the composition operation by saying that the

following diagram commutes

b

a c

g f

f ◦ g

There are many categories, each appropriate to a particular subject matter.

Several categories include:

Set, the category of finite sets and maps

Grp, the category of groups and homomorphism

Ab, the category of abelian groups and homomorphisms

Rng, the category of rings and ring homomorphisms

VectK, the category of vector spaces over a field K and linear maps

Top, the category of topological spaces and continuous maps

Bordn, the category of bordisms

4See [5] for a simple introduction to category theory. The standard text on category
theory is [7]. This section quotes freely from both sources.
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A quick check confirms that each of these categories contains the necessary

data. To form a category we require that the identity and composition oper-

ations satisfy two axioms.

1. Identity Laws

(a) If a
1a−−→ a

f−→ b

then a
f ◦ 1a = f−−−−−−−→ b

(b) If a
f−→ b

1b−−→ b

then a
1b ◦ f = f−−−−−−→ b

2. Associativity:

If a
f−−→ b

g−−→ c
h−−→ d

then a
h ◦ (g ◦ f) = (h ◦ g ) ◦ f−−−−−−−−−−−−−−→ d

The identity laws are equivalent to requiring the following two diagrams to

commute

b a

a b a b

f 1b

1b ◦ f

1a f

f ◦ 1a

The associative law likewise has a commutative diagram

a d

b c

h ◦ (g ◦ f) = (h ◦ g ) ◦ f

hf

g◦f

h◦g

g

The framework identified so far already has much to say about many fields

of mathematics. Take for example the category FinSet. The objects of FinSet

are finite sets and the arrows are maps between sets. In set theory we already

had the notion of equality of sets. This was inherited from the notion of

equality of elements of a set. But set theory lacks a similar structure for

identifying equality among the many maps of sets. Consider for example that
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there are many interesting maps between sets but there is a special class of

maps which map between the same set. These maps are called endomaps. One

of these endomaps is the identity, but there are many others. The identity is

distinguished by sending every element to itself. Some of these endomaps are

distinguished by pairing off elements and sending these pairs to each other (if

the order of the set is odd at least one element has to be paired with itself). In

this case the endomap is its own inverse indeed endomap are the only maps of

sets which may be their own inverses. Such an endomap that is its own inverse

is called an involution. Other maps pair elements off in threes or fours. Some

endomaps pair some elements off in threes and other elements in pairs and yet

others in more complicated ways. Intuitively we recognize that maps which

have the same cycle structure are equivalent in the sense that they can be

mapped onto each other while maintaining the relationships of their elements.

This intuition is what category theory formalizes.

In category theory the previous observation would be recorded by giving

the following commutative diagram in which α and β are two endomaps of the

sets A and B (possibly the same set) and f is a third map between the two

sets (itself possibly an endomap in the case A and B are the same)

A A

B B

α

f f

β

The important lesson is that category theory provides us with the language to

describe maps on the same footing as the objects themselves.

In addition categories there are ways to pass from one category to another.

This gives the second most important feature of category theory – the functor.

A functor is a morphism of categories and must map both objects and mor-

phisms from one category to the other. That is, for two categories B and C a

functor F : B → C consists: (1) the object function F , which assigns to each

object b of B an object F (b) of C and (2) the morphism function (also written

F ) which assigns to each morphism b
f−→ b′ of B a morphism F (b)

F (f)−−→ F (b′)

of C. Note that the functor assigns the morphism of B not to just any mor-

10



phism of C but to that morphism which is between the objects of C mapped

to by those in B. This relationship may also be given a commutative diagram.

B B

C C

f

FF

F (f)

This suggests that the category of categories is itself a category with mor-

phisms given by functors. By providing a precise mechanism for translation of

structure from one ‘mathematical universe’ to another, the concept of functor

has allowed a new unification of many fields of mathematics.

We now define a refinement of the notion of category and functor: that of

a monoidal category and a monoidal functor. A categoryM is called monoidal

if, in addition to the data and rules already discussed, it contains a bifunctor

µ : M ×M → M called the monoidal product (sometimes tensor product).

This monoidal product is useful because it allows us not only to compose

morphisms in M but also objects. The first example of a monoidal category is

VectK where the ordinary tensor product ⊗ composes both vector spaces and

maps on those vector spaces.

We require µ to be associative up to natural isomorphism and to have an

object which is an identity. We can write this object as the map η : 1 → M .

These rules are summarized by the two commutative diagrams5

M ×M ×M M ×M

M ×M M

1×µ

µ×1µ

µ

and

5These two diagrams and the following two are often superseded by the so-called pentagon
diagram and triangle diagram which are an equivalent set of commutative diagrams which
define a monoidal category.
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1×M M ×M M × 1

M = M = M

η×1 1×η

λ µ ρ

Where λ and ρ are maps 1 × X
λ−→ X

ρ←− X × 1 given by ‘projection’:

λ(0, x) = x = ρ(x, 0).

The above defining diagrams for a monoidal category may be clarified by

rewriting with elements. We write µ as a product µ(x, y) = xy and replace

the function η on the 1-point set 1={0} by its only value, an element η(0) =

u ∈M .

⟨x, y, z⟩ ⟨x, yz⟩

⟨xy, z⟩ (xy)z = x(yz)

⟨0, x⟩ ⟨u, x⟩ ⟨x, u⟩ ⟨x, 0⟩

x = ux xu = x

These are precisely the familiar axioms of a monoid: multiplication is as-

sociative and there is an element u that is a left and right identity. Hence

we have a monoidal category. A monoidal functor (sometimes called a tensor

functor) is a functor Z which maps between two monoidal categories and re-

spects the monoidal product. If Z is a monoidal functor between categories

with monoidal products denoted by ⊔ and ⊗ and if Σ and Σ′ are two objects

in the first category then Z is required to satisfy
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Z(Σ ⊔ Σ′) = Z(Σ)⊗Z(Σ′)

One consequence of this requirement is that Z should take the tensor unit of

the first category to the tensor unit of the second. For example, in VectK the

unit of the tensor product is the ground field: K⊗V ∼= V ∼= V ⊗K. If in some

other category the unit of the monoidal product is denoted ∅ then a monoidal

functor from that category to VectK is required to satisfy

Z(Σ) = Z(∅ ⊔ Σ) = Z(∅)⊗Z(Σ)

So clearly a monoidal functor must satisfy Z(∅) = K.

Lastly, a monoidal category is called symmetric if there exists a natural

isomorphism

γ : x⊗ y → y ⊗ x

called the braiding which satisfies the condition

γ ◦ γ = 1

for all objects x, y. The braiding is sometimes referred to as a ‘twist’ and

expresses a certain commutativity in the monoidal product (here written as

⊗). In general a monoidal category may be braided without being symmetric.

What this means is that there may exist a natural isomorphism when the order

of products is reversed but that reversing the order twice does not necessarily

equal the original product (the twist is not necessarily its own inverse).

Summarizing, a symmetric monoidal functor is a functor Z : B → C be-

tween symmetric monoidal categories is a monoidal functor which respects the

symmetry of both categories. This is expressed in the following commutative

diagram.

a ⊔ b b ⊔ a

Z(a)⊗Z(b) Z(b)⊗Z(a)

γ

ZZ
Z(γ)
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The axioms of topological quantum field theory

With these definition we are prepared to explain Atiyah’s definition of a topo-

logical quantum field theory.

Definition (Atiyah): An n-dimensional topological quantum field theory is

a symmetric monoidal functor

Z : Bordn → VectC

We will work through this definition slowly. The category VectC is already

familiar as the prototypical monoidal category. As a category it consists of

Vector spaces over C : A,B,C . . .Objects:

Linear maps A
f−→ A,A

f−→ B . . .Maps:

A
1A−→ A, . . .Identity Maps:

Assigns to each pair of maps of the typeComposition of maps:

A
g−→ B

f−→ C, another map A
f ◦ g−−→ C

(Tensor Product) A⊗B ∈ VectCMonoidal Product:

Satisfying (A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

With unit C :

C⊗ A ∼= A ∼= A⊗ C

A⊗B ∼= B ⊗ ASymmetry:
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Bordn is another monoidal category, perhaps less familiar. As a category it

consists of (the less familiar objects are explained below)

Closed (n− 1)-manifolds: Σ,Σ′, . . .Objects:

Bordisms, modulo diffeomorphism: M,N, . . .Maps:

CylindersIdentity Maps:

Gluing of bordismsComposition of maps:

(Disjoint Union) Σ ⊔ Σ′ ∈ BordnMonoidal Product:

Satisfying (Σ ⊔ Σ′) ⊔ Σ′′ ∼= Σ ⊔ (Σ′ ⊔ Σ′′)

With the empty manifold as unit :

∅ ⊔ Σ ∼= Σ ∼= Σ ⊔∅

Σ ⊔ Σ′ ∼= Σ′ ⊔ ΣSymmetry:

The category Bordn is named after its morphisms. A morphism Σ→ Σ′ is an

equivalence class of bordisms from Σ to Σ′. A bordism Σ→ Σ′ is an oriented

compact n-manifold M with boundary. We imagine that the boundary is the

two manifolds Σ,Σ′. This is already rather abstract and manifolds with n > 2

are hard to visualize so we provide an example now of a 2-dimensional TQFT.

This discussion will mirror that given by [6].

For n = 2 we need to consider the category Bord2. The objects of Bord2

are closed 1-manifolds. The only closed 1-manifold is the circle S1. Because

Bord2 is a monoidal category with monoidal product given by disjoint union

we can compose this object to get all the other objects. For example S1 ⊔ S1

is also an object of Bord2. The functor Z is supposed to map objects from

Bord2 to vector spaces. Thus we have Z(S1) = A for some vector space A.

Because Z is a tensor functor we have that Z(S1 ⊔ S1) = A⊗ A. This shows
us that the entire action of Z for all objects of Bord2 is determined by what

it does to the circle. This is a special feature of TQFT in dimension 2 that it

is determined by its action on a single object.
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Morphisms in Bord2 are compact 2-manifolds with boundary such that the

boundary is some disjoint union of circles. First we have the identity bordism

that is the cylinder S1 × [0, 1]6

Sending this bordism through the functor gives Z(S1 → S1) = A → A.

This corresponds to no evolution. For a slightly less trivial example we have

the bordism B : S1⊔S1 → S1 from two circles to one circle (the pair of pants)

By sending B through Z this bordism corresponds to the map

Z(B) = m : A⊗ A→ A

We can think of this as multiplication on A, as it is associative, commutative,

and has a unit element. There is also the coproduct map from one circle to

two circles

The unit comes from the bordism from the empty manifold to the circle

with map Z(∅ → S1) : C → A. This map is defined by where it sends 1.

Likewise we have the bordism from the circle to the empty manifold

6To save time, instead of drawing my own bordisms I have copied those from [4].
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with map Z(S1 → ∅) = tr : A→ C which we call the trace.

The last bordism we will explicitly define is the twist from two circles to two

circles

This guarantees that the categories are symmetric. It turns out to be true

that these six bordisms under composition and disjoint union generate the

category Bord2. To be explicit about this we could give a series of relations

for these generators which we will not do here but only remark that they are

equivalent to the Reidemeister moves from knot theory with the exception of

not representing moves as passing over or under and that Witten used 3-d

TQFT to make statements about the Jones polynomial and knot invariants.

The physical interpretation is as follows. One can imagine the (n − 1)-

manifolds Σ as space and that Z associates to this space a vector space that

is the state space HΣ. The bordisms then represent spacetime and Z of the

bordism gives a linear map/ operator that is identified with the Feynman

propagator of the state space. That is, for each oriented n-manifold M with

boundary ∂M = Σ, we obtain a vector Z(M) ∈ HΣ which corresponds to the

propagator of the path integral. To form this propagator for fields ϕ on Σ we

only need to calculate the path integral over fields on M which restrict to ϕ

on the boundary:

Z(M)(ϕ) =

∫
Φ on M s.t. Φ|Σ=ϕ

DΦe−S[Φ]

Diffeomorphism invariance of the bordisms ensures metric independence of

correlation functions. Finally it was important that Z be a monoidal functor:

that disjoint union goes to tensor product captures the idea that two systems
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which carry their own degrees of freedom correspond to tensored state spaces.

In particular we have that Z(∅) = C. Lastly, Z, maps unit morphisms to unit

morphisms. That is, for an oriented (n−1)-manifold Σ, we have Z(Σ×[0, 1]) =
1Z(Σ) . This states the interesting fact that nothing happens in empty space,

or that the Hamiltonian is zero.

We remark that composing these bordisms gives the nondegenarate trace

pairing A⊗ A m−→ A
tr−→ C represented by the bordism

This is the basis for the identification of 2-d TQFTs with commutative

Frobenius algebras. To see this connection recall the definition of a C-algebra
as a C-vector space A together with two C-linear maps

m : A⊗ A→ A η : C→ A

These maps must satisfy the associativity and unit laws given previously. This

of course identifies the C-algebra with a monoid in VectC and therefore also

with Bord2. The nondegenerate trace pairing given by the U-tube above makes

this into a Frobenius algebra and the twist map makes it commutative.

In the theory of TQFTs closed n-manifolds without boundary play im-

portant roles. Such a manifold represents a bordism from the empty (n -

1)-manifold to itself, and its image under A is therefore a linear map C → C
(a scalar). This scalar is a topological invariant in the sense that it is uniquely

defined by the topology of the chosen closed n-manifold. This is the invariant

we want to calculate. The strategy for an arbitrary closed n-manifold is to cut

it into smaller pieces for which this invariant is easier to calculate and then

paste the bordisms back together. This is especially evident in 2-dimensional

TQFTs. Bordn for n > 2 is hard to describe but in n = 2 not only is only

one closed, connected 1-manifold, but in addition all closed 2-manifolds are

known. They are given of course by the sphere, the torus, the double torus,

and so forth. These manifolds are differentiated by their genus (number of
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holes) and Euler characteristic (a function of the number of holes).

Dijkgraaf-Witten Theory

The discussion in this section derives from [1] and [3].

Physically Dijkgraaf-Witten theory is recognized as G-gauge theory. The

simplest example of a G-gauge theory is given by the Ising model of statistical

mechanics used to model magnets. Magnetism is the result of the alignment of

a macroscopically large number of electron spins which may either point up or

down. In the Ising model the electrons are approximated as living on a lattice

in d dimensions and each of the spins may be either up or down. Whether

the spin is up or down corresponds to a weight in the Boltzmann partition

function of the system defined in statistical mechanics. The dynamics of the

systems are determined by this partition function.

We may view the Ising model as an example of a G-gauge theory where

G = Z/2Z as the spins can choose out of two orientations. We see then

what is meant when Dijkgraaf-Witten theory is a G-gauge theory. Instead

of being on a lattice we allow the theory on a manifold M and the ‘choices’

of spin orientation are identified with principle bundles for the group.7 The

connection to field theory is that the fields on M are these principle bundles.

Moreover these are characterized by monodromy (essentially genus) on M .

This connection identifies principle bundles with the fundamental group of M

as {π1(M) → G}/conjugacy. This is the hint that the solution is topological

despite that in Dijkgraaf-Witten theory the spins are at first put onto the

manifold by triangulation of the manifold. The theory must consist of a map

that sends combinations of the group elements to a Boltzmann weight which

leads to the partition function. It can be shown that this partition function is

independent of the original triangulation and thus Dijkgraaf-Witten theory is

topological.

We want to reduce to the problem to knowing Z(S1) and then cut and

7We point out that Dijkgraaf-Witten theory is a toy model for Chern-Simons theory in
which the group is finite.
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paste the closed manifold into manageable ones. This cutting and pasting is

done on 2-manifolds by triangulation. This is explained in [3]. A triangulation

of M allows the definition of trace maps which form the invariants.

Fields on M are homomorphisms from f.g. to G so they are given by G
G

adjoint quotient.

Linearization of space of fields gives Z(S1) = A = Fun
(
G
G

)
= C

[
G
G

]
=

Z(C[G]) the space of class functions. Conjugacy classes (Characters of reps)

of G are basis of A Hilbert space. Frobenius form given by trace (trace at

1 is dimension of a character)

Simultaneously diagonalize operators in A = C
[
G
G

]
↔ spectral decom-

position

Spec C
[
G
G

]
=

{
homomorphisms C

[
G
G

]
→ C

}
=

{
Irreps of G

}
This result on the invariant of the TQFT can be used to derive Mednykh’s

formula which places constraints on the dimensions of irreducible representa-

tions of the group G given characteristics of the manifold M .

∑
V ∈ Irrep(G)

dimV χ(M) = |G|χ(M)−1|Hom(π1(M), G)|
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