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Abstract

Invariant parts of spherical functions are discussed. The SO(3) invariants of both 1-

point and 2-point spherical functions are exhibited explicitly. Some direction is provided

for generalizing these techniques to 3-point functions through the Racah coefficients. The

role of parity is discussed. The cosmic microwave background is used as an example of

the methods developed.



Introduction

Physical laws are defined by the symmetries they preserve. Symmetry gives, by definition,

a number of equivalent states for a system. However all systems which come into existence

must break their symmetry by choosing one of the allowed states. This is a basic ontological

consequence – while the physical laws themselves obey symmetries, the initial conditions

often do not. This poses a problem for experimental physics where we do not know the laws

ahead of time and it is only through observation that we gain an understanding of them.

When we have only one or a few chances to view such a system we have to be careful about

the conclusions that we draw. How do we separate circumstance from physical law?

Take for example a pencil standing on its tip. It is equally likely to fall in any direction

but it can only choose one. If we only observe the pencil falling once we might make the

assumption that some law of the system caused the pencil to fall in the direction it did. If

however we had an ensemble of many pencils and watched all of them fall then the symmetry

would become apparent. On the other hand, if we know the correct symmetry, then we would

not need the ensemble. Knowing the full symmetry allows us to make statements about a

system which are independent of any particular realization. By knowing what pieces of a

system are invariant under the symmetry we make conjectures on the laws of the system based

only on those invariants. Hence an important question in physics asks what the invariants are

of a given symmetry. In this paper we will be concerned with finding invariants of rotational

symmetry for functions defined on a sphere. Much of this theory has been worked out in the

last century by Eugene Wigner (see references).

The outline for this paper is as follows. First we discuss the representation theory of the

rotation group SO(3). We then apply these results to derive two simple SO(3) invariants

of an arbitrary function on a sphere, namely its average and its angular power spectrum.

We provide some comments on how to extend these results to finding more invariants. We

also discuss extending the symmetry to the full orthogonal group O(3). This naturally dif-

ferentiates invariants of scalar and pseudoscalar functions. Although the results we present

are quite general, an important motivation for their study is provided from the astrophysics

community and the cosmic microwave background radiation (CMB). At the end we provide

a brief discussion of CMB physics.

Representation Theory of SO(3)

Every rotation is a symmetry by preserving the standard inner product on R3. That is, if we

define the inner product for any two vectors, x, y ∈ R3 as

〈x, y〉 ≡ xT y ≡ x1y1 + x2y2 + x3y3
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then we require the rotation R to satisfy

〈Rx,Ry〉 = 〈x, y〉

Writing this out we find

〈Rx,Ry〉 = (Rx)T (Ry) = xT (RTR)y

giving the condition RTR = I. Such a transformation on R3 is called orthogonal. The set of

orthogonal transformations on R3 defines the matrix Lie group O(3). Taking determinants

we find that R must also satisfy det(R) = ±1. The negative determinant matrices correspond

to parity inversions of the space. The positive determinant matrices form a subgroup of O(3)

called the special orthogonal group denoted SO(3).

To say that SO(3) is a Lie group means that the group elements are related by several

continuous parameters. The two relations RTR = I and det(R) = 1 tell us that SO(3) has

three parameters. In the case of SO(3) there are three common parameterizations. Before

we discuss these parameterizations it will be useful to state the associated Lie Algebra.

The three generators are called Jx, Jy, and Jz and they satisfy the commutation relations

[Ji, Jj ] = iεijkJk. It is easy to check that a rotation by α about the x-axis is given by e−iαJx .

From these commutation relations we deduce that SO(3) has representations labeled by an

integer l of dimension 2l + 1. We may refer to an abstract basis for these representations

using kets labeled as |lm〉 or more concretely using spherical harmonics defined as

Y m
l (θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimφ

where Pml are the associated Legendre polynomials and the normalization ensures∫∫
Y m∗
l Y m′

l′ dΩ = δll′δ
mm′

These functions are complete and any function f on a sphere can be expanded in a uniformly

convergent series of spherical harmonics.

f(θ, φ) =
∞∑
l=0

m=1∑
m=−l

almY
m
l (θ, φ)

The coefficients are computed in the regular way as the projection of the basis vectors

onto the function

alm =
〈
Y m
l

∣∣∣ f(θ, φ)
〉

=

∫
dφ

∫
sin θ dθ Y m

l (θ, φ)∗f(θ, φ)
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Since the spherical harmonics for given l define a representation of SO(3) they behave

nicely under rotations, transforming into linear combinations of themselves

Y m
l (RΩ) =

∑
m′

Dl
m′m(R)Y m′

l (Ω)

Where we the expansion coefficients Dl
m′m(R) depends on the rotation, R. The Dl

m′m(R) are

the Wigner matrices. The explicit form of the Wigner matrices depends on the parameter-

ization of the group chosen and we now discuss the three common parameterizations of the

group.

In the first an arbitrary rotation is achieved by successive rotations about three mutually

orthogonal fixed axes. This is perhaps the simplest parameterization to think of but not

necessarily the most useful. An alternative is to define rotation with respect to three comoving

axes. In practice means choosing a first axis to rotate around, usually z, and to rotate by an

angle α. Then one would rotate around one of the new x- or y-axes. We will assume the second

rotation is one by angle β about the new y-axis. The final rotation is then about another one

of the new axes. We assume this to be the new z-axis and by angle γ. The standard notation

for these conventions is to say that we have chosen the Zα − Yβ − Zγ parameterization. The

angles α, β, γ are called Euler angles. The final common parameterization is the axis-angle

representation given by specifying an axis to rotate about and the angle by which to rotate.

Using the Euler angle parameterization an arbitrary rotation can be written

R(α, β, γ) = e−iαJze−iβJze−iγJz

And the Wigner matrices take the more explicit form

Dl
m′m(R(α, β, γ)) = Y m′∗

l R(α, β, γ)Y m
l = e−im

′αdlm′m(β)e−imγ

where dlm′m is Wigner’s small d-matrix. This has an explicit form in terms of β but it is

rather complicated.

The 1-point function

We start by examining the simplest case of a scalar function of one point on the sphere. Call

this function f = f(Ω). We wish to determine the spherically invariant piece of this function,

that is, the piece f̃ which satisfies f̃(RΩ) = f̃(Ω). It is clear that this invariant part of f can

only have trivial angular dependence if it is to remain invariant under arbitrary rotations – the

only function which is unaffected by rotation is the constant function f(Ω) = fo. Intuitively,

for an an arbitrary function f which is not constant over the sphere we expect this invariant

part to be its average over the sphere. No matter where you look you expect the average
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value to be the same. We may extract this invariant part in two equivalent ways. The most

explicit is to average the function over all rotations. That is, define the invariant part as

f̃(Ω) ≡
∫
SO(3)

f(RΩ)dR

Then we can prove that this is in fact invariant under arbitrary rotation by appealing

to the rearrangement theorem. For a finite group G = {e, a, b, . . . , n} the rearrangement

theorem states

aG = {a, a2, ab, . . . , an} = G

That is, multiplying every element of the group by some fixed element merely permutes

the elements without removing one or adding something new. We may state the theorem

equivalently given a function which is summed over all group elements as

∑
g

f(g) =
∑
g

f(g′g)

All terms appear on both sides, only perhaps in a different order. For finite groups the

proof of this theorem is trivial. The statement of this theorem carries over in a natural way

to compact Lie groups when we replace the sum by an integral and may be stated as∫
f(R)dR =

∫
f(R′R)dR

Because this is a compact group the integral should converge. The only thing we need

to be careful about is the integration measure. The form of the measure depends on the

parameterization of the group as dR = µ(R)da1da2 . . . dar where µ(R) is the group density

at R and the differentials are the parameter differentials. The proof of the rearrangement

theorem for compact groups relies upon this integration measure being constant across the

group. Notationally we write µ(R) = µ(I). Since this theorem holds for the group SO(3) we

can show that f̃ defined above really is the invariant part of the 1-point function:

f̃(RΩ) =

∫
SO(3)

f(RR′Ω)dR′ = f̃(Ω)

Indeed f̃ , whatever it is, is invariant under arbitrary rotation. At this point it would

be possible to give a more explicit form for f̃ in terms of this integral by substituting the

spherical harmonic decomposition and the Euler angle parameterization. This is rather in-

volved. Instead we know almost by definition that the invariant part must be that given by

the trivial representation, that is the Y 0
0 term of its spherical harmonic decomposition. Also

the natural constant function we can define for an arbitrary function is its average. We can
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show that the Y 0
0 term in fact does correspond to the average of the function over the sphere

〈
f(θ, φ)

〉
sphere

=
1

4π

∫∫
f(θ, φ) sin θ dθdφ

=
1

4π

∫∫ (∑
l,m

almY
m
l

)
sin θ dθdφ

=
1

4π

∑
l,m

alm

∫∫
Y m
l sin θ dθdφ

=
1

4π

∑
l,m

alm

∫ 2π

0
dφ eimφ

∫ π

0

√
2l + 1

4π

(l −m)!

l +m)!
Pml (cos θ) sin θ dθ

=
1

4π

∑
l,m

alm2πδm,0

√
2l + 1

4π

(l −m)!

l +m)!

∫ 1

−1
Pml (x) dx

=
1

2

∑
l

al0

√
2l + 1

4π

∫ 1

−1
Pml (x) dx

= a00
1√
4π

= a00Y
0
0

Which confirms that Y 0
0 gives the average of f in the sense that it is the unique quality

of f at a single point which remains unchanged by an arbitrary rotation. Our story does not

end here. We can build more complicated rotation invariants. To do this we must look at

more complicated objects.

Invariants of the scalar 2-point function

Consider a function of two points on the sphere, g = g(Ω1,Ω2). This could take many forms.

For example,

g(Ω1,Ω2) = f1(Ω1)± f2(Ω2)

g(Ω1,Ω2) = f1(Ω1)f2(Ω2)

In fact, to be totally general we can decompose f1 and f2 into spherical harmonics and

determine the most general function of two points
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g(Ω1,Ω2) =
∑
l1

∑
l2

∑
m1

∑
m2

bm1m2
l1l2

Y m1
l1

(Ω1)Y
m2
l2

(Ω2)

Clearly both of the cases above are subsumed by writing g in this way. We wish to extend

the result above to determine the rotationally invariant part of a function of two points.

Schematically we want g̃(RΩ1, RΩ2) = g̃(Ω1,Ω2). This part is determined explicitly by the

rearrangement theorem by defining

g̃(Ω1,Ω2) =

∫
SO(3)

g(RΩ1, RΩ2)dR

The form of g̃ could again be determine explicitly by substituting the double spherical

harmonic expansion into this and utilizing the Euler angle parameterization. However this

is also rather involved. We can get around this again by guessing at the correct form and

showing it to be correct Define

A =
l∑

m=−1
Y m
l (Ω1)

∗Y m
l (Ω2)

Under rotation,

RA =
∑
m

(∑
µ

Dl
µm(R)Y µ

l (Ω1)

)∗(∑
ν

Dl
νm(R)Y ν

l (Ω2)

)

=
∑
µν

(∑
m

Dl
µm(R)∗Dl

νm(R)

)
Y µ
l (Ω1)

∗Y ν
l (Ω2)

=
∑
µν

(∑
m

[
Dl(R)−1

]
mµ

[
Dl(R)

]
νm

)
Y µ
l (Ω1)

∗Y ν
l (Ω2)

=
∑
µν

δµνY
µ
l (Ω1)

∗Y ν
l (Ω2)

=
∑
µ

Y µ
l (Ω1)

∗Y µ
l (Ω2) = A

That is, A is a rotational invariant. This proof relied crucially on the unitarity of the

Wigner matrices. Given that A is rotationally invariant we are free to rotate it into any

position that is convenient. So we send Ω1 = (θ1, φ1) and Ω2 = (θ2, φ2) to the special

points Ω′1 = (0, φ) and Ω′2 = (χ, 0). The first is the north pole and the second is along the

prime meridian. Note that χ is defined as the angle between Ω1 and Ω2. Performing this

substitution allows us to replace the spherical harmonics with their simplified forms.
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Figure 1: The simplest orientation for a two-point function is to send one point to the north
pole and the other to lie along the prime meridean.

Y m
l (Ω′1) =

√
2l + 1

4π
δm0

The δm0 reduces the summation defining A to only the m = 0 terms which allows us to

simplify the other harmonic term

Y 0
l (χ, φ2) =

√
2l + 1

4π
Pl(cosχ)

Hence we obtain

A =
2l + 1

4π
Pl(cosχ)

Combining this with our defining equation for A we obtain the result of the Spherical

Harmonic Addition Theorem.

Pl(cosχ) =
4π

2l + 1

∑
m

Y m∗
l (Ω1)Y

m
l (Ω2)

If we rearrange this slightly, multiply by |alm|2 and sum over l we obtain

∑
l

∑
m

[
almY

m
l (Ω1)

]∗
almY

m
l (Ω2) =

∑
l

2l + 1

4π
|alm|2Pl(cosχ)

Which defines the 2-point correlation function

〈Ω1,Ω2〉 =
∑
l

2l + 1

4π
ClPl(cosχ)

Where the Cl = 1
2l+1

∑
m |alm|2 define the angular power spectrum. This expansion in

Legendre polynomials is rotationally invariant. For the two-point function we have g̃(Ω1,Ω2) =

〈Ω1,Ω2〉. Intuitively what this tells us is that for an arbitrary function which arises from

spherically symmetric processes what we care about is only the strength of fluctuations at a
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given scale.

What we have just done is made more easily accessible when we view the two point

function g in terms of angular momentum. Instead of expressing g as a quadruple sum over

l1, l2,m1,m2, the theory of angular momentum developed in quantum mechanics allows us to

change basis and think of g as the sum of components of definite total angular momentum L.

We may define rank-two spherical tensors (bipolar spherical harmonics) as bilinear products

of spherical harmonics with different arguments coupled to total angular momentum. This

definition relies upon the well-known Clebsch-Gordan series

Bl1l2
LM (Ω1,Ω2) =

∑
m

C(l1, l2, L;m,M −m,M) Y m
l1 (Ω1)Y

m
l2 (Ω2)

The quantities Bl1l2
LM encode interactions (correlations) between different spatial scales,

al1m1 , al2m2 . Phrased in this basis g becomes a sum over these states of definite total angular

momentum

g(Ω1,Ω2) =
∞∑
L=0

L∑
M=−L

bLMBLM (Ω1,Ω2)

Now it is manifestly evident that the rotationally invariant part of g is given by B00 –

the trivial representation of SO(3). We see from the definition that B00 must correspond to

the result of the addition theorem and the angular power spectrum. But what then do the

higher moments of the BLM correspond to? Many in the astrophysics community view these

as the tool to understanding departures from isotropy in the cosmic microwave background.

But in an entirely analogous way to how we formed the angular power spectrum out of the

spherical harmonic decomposition in the addition theorem, we should be able to form a rank-

two power spectrum out of this bipolar harmonic decomposition. In 1968 Yasuo Munakata

gave precisely this generalization of the spherical harmonic addition theorem to sums of the

bipolar spherical harmonics. The resulting polynomial which corresponds to the Legendre

polynomial is a finite series of the Gegenbauer polynomials.

Now we recognize that we can continue building up more and more complicated functions

to describe more and more SO(3) invariants of any function. For example we can consider

coupling three angular momenta l1, l2, l3 to give a resultant L. The first difficulty with this

procedure is that there are two ways to complete this coupling. We may first couple l1 to

l2 and then couple their resultant to l3. Alternatively we may first couple l2 and l3 and

then couple their resultant to l1. These two routes are related by a unitary transformation,

but are not in general exactly equivalent. The elements of this unitary matrix are the Racah

coefficients whose symmetry properties are related to those of the Clebsch-Gordan coefficients

by the 3-j and 6-j symbols.
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This scheme can be extended in the obvious, though computational intensive way to

arbitrary combinations of angular momentum giving more information

Parity

We conclude the main development with a short note on the role of parity. We recognize

that the arbitrary function f(Ω) does not have a well-defined parity by the parity property

of the spherical harmonics: Under parity inversion (θ, φ) 7→ (π − θ, φ ± π) and Y m
l (Ω) 7→

(−1)lY m
l (Ω). Thus our decomposition of f breaks up into even and odd parity parts

Pf =
∑
l

(−1)l
∑
m

almY
m
l (Ω) = f0 − f1 + f2 − f3 + . . .

Using these symmetry properties we can define two functions

fodd =
∑
l odd

∑
m

almY
m
l

feven =
∑
l even

∑
m

almY
m
l

Pfeven = feven Pfodd = −fodd

(scalar 1-point function) (pseudo-scalar 1-point function)

We notice immediately that pseudo-scalar functions do not have any 1-point SO(3) in-

variants! However both scalar functions and pseudoscalar functions exhibit the Legendre

polynomial decomposition as two-point invariants. This question of parity should be pursued

and understood at the level of the bipolar spherical harmonics and their invariants.
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Cosmic Microwave Background

The cosmic microwave background is a low energy radiation field first predicted in the 1940s

and detected in the 1960s. The radiation was created early in the history of the universe

when matter and radiation decoupled. In the astrophysics community it is understood to be

the cleanest and most direct information about the early universe. The temperature map

(3) is characterized foremost by its isotropy. The standard deviation of the whole-sky map is

only on the order of 100 milliKelvin. However detailed measurements indicate the presence

of anisotropies. These anisotropies are recognized as stemming from two sources. Primary

anisotropies refer to effects that occurred at the last scattering surface and before. Secondary

anisotropy refers to effects which have affected the map since then including interactions of

the radiation with hot gas or gravitational potentials. Both source of anisotropy provide

useful information to astrophysicists. The primary anisotropies place constraints on inflation,

the geometry of the universe, baryon density, and dark matter. The secondary anisotropies

indirectly provide information of galaxy formation.

Figure 2: CMB angular power spectrum.

In studying the CMB, any information about these anisotropies has to survive an arbitrary

rotation because the laws which created them are rotationally invariant. We can imagine an

ensemble universes, each exactly like our own but each rotated arbitrarily. The ensemble

average CMB contains the only information about the CMB physics independent of initial

conditions.

The 1-point invariant, the average, is well known to be about 2.7K. This places constraints

on the age of the radiation. The more interesting results come from the angular power

spectrum afforded as 2-point invariants.
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(a) Full CMB

(b) l=3 (c) l = 20

(d) l=50 (e) l=100

Figure 3: The cosmic microwave background temperature map in Mollweide projection as
measured by WMAP. Data retrieved from https://lambda.gsfc.nasa.gov/product. Subfigures
show the CMB contribution from distinct angular momenta. All plots were generated by me.



References

Papers:

Coble, K., et al. 2003 ApJ 584, 585-592.

Hu, W., Dodelson, S., 2002 ARA&A, 40, 171.

Munakata, Y. 1968. Commun. math. Phys. 9, 18-37.

Textbooks:

Edmonds, A.R., Angular Momentum in Quantum Mechanics, Princeton University Press.

1957.

Jansen, L., Boone, M., Theory of Finite Groups. Applications in Physics. Elsevier. 1967.

Rose, M.E., Elementary Theory of Angular Momentum. John Wiley & Sons. New York.

1957.

Wigner, E. Group Theory and its Application to the Quantum Mechanics of Atomic Spectra.

Trans. J.J. Griffin. Academic Press. 1959.

Presentations

Eriksen, H.K., An Introduction to the CMB Power Spectrum.

http://folk.uio.no/hke/AST5220/v11/AST5220 2 2011.pdf. 2011.

Hivon, E., Galli, S., CMB Angular Power Spectra and Their Likelihoods in Theory and in

(Planck) Practice. 2017.


